False positives in neuroimaging genetics using voxel-based morphometry data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

False positives in neuroimaging genetics using voxel-based morphometry data

Voxel-wise statistical inference is commonly used to identify significant experimental effects or group differences in both functional and structural studies of the living brain. Tests based on the size of spatially extended clusters of contiguous suprathreshold voxels are also widely used due to their typically increased statistical power. In "imaging genetics", such tests are used to identify...

متن کامل

The principled control of false positives in neuroimaging.

An incredible amount of data is generated in the course of a functional neuroimaging experiment. The quantity of data gives us improved temporal and spatial resolution with which to evaluate our results. It also creates a staggering multiple testing problem. A number of methods have been created that address the multiple testing problem in neuroimaging in a principled fashion. These methods pla...

متن کامل

Voxel-Based Morphometry

The human brain is in a state of constant change and adaptation. This may be driven either by normal developmental or aging processes or by the effects of learning, training, and new occurrences in daily life. In addition to these aforementioned changes, more systematic influences such as gender, disease, and genes affect the brain’s structure. Using magnetic resonance imaging, brain changes an...

متن کامل

Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data

Graph theory (GT) is a powerful framework for quantifying topological features of neuroimaging-derived functional and structural networks. However, false positive (FP) connections arise frequently and influence the inferred topology of networks. Thresholding is often used to overcome this problem, but an appropriate threshold often relies on a priori assumptions, which will alter inferred netwo...

متن کامل

Voxel-based morphometry 1113 elements

An underlying assumption of the above parametric approach is that the process is a = Gaussian field, i.e., its statistical characteristics, including its roughness parameter (or its reciprocal, the smoothness ) ), are the same at each point in the image. The FWHM of the process should be constant in all directions and across all voxels in the image. While these assumptions are reasonable for fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: NeuroImage

سال: 2011

ISSN: 1053-8119

DOI: 10.1016/j.neuroimage.2010.08.049